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The photocurrent in an optically active metal is known to contain a component that switches sign with

the helicity of the incident radiation. At low frequencies, this current depends on the orbital Berry phase of

the Bloch electrons via the ‘‘anomalous velocity’’ of Karplus and Luttinger. We consider quantum wells in

which the parent material, such as GaAs, is not optically active and the relevant Berry phase only arises as

a result of quantum confinement. Using an envelope approximation that is supported by numerical tight-

binding results, it is shown that the Berry-phase contribution is determined for realistic wells by a cubic

Berry phase intrinsic to the bulk material, the well width, and the well direction. These results for the

Berry-phase effect suggest that it may already have been observed in quantum well experiments.

DOI: 10.1103/PhysRevLett.105.026805 PACS numbers: 73.63.Hs, 73.50.Pz, 78.67.De

The ‘‘Fermi liquid’’ theory of metals developed by
Landau captures the microscopic details of band structure
and interactions in a small number of parameters that
quantify how the quasiparticles in the metal differ from
free electrons. While this theory has been successful in a
wide variety of materials, it is now considered to be in-
complete: it does not include physics resulting from the
Berry phase of the Bloch wave functions. Berry phases
result when a quantum-mechanical wave function changes
smoothly as a function of some parameter [1]. The orbital
Berry phases in metals cause an ‘‘anomalous velocity’’ of
Bloch electrons, derived by Karplus and Luttinger [2] and
later explained as a Berry-phase effect [3–5].

The Berry phase that influences basic transport proper-
ties vanishes in materials that are symmetric with respect to
both inversion and time reversal. In metals that break time-
reversal (TR) symmetry (ferromagnets and antiferromag-
nets), the Berry phase leads to an ‘‘intrinsic’’ mechanism of
the anomalous Hall effect (AHE). The other broad class of
materials with nonzero Berry phase are those in which TR
is preserved but inversion symmetry is broken; in insula-
tors, these Berry phases underlie the modern theory of
polarization [6,7]. Berry phases from spin-orbit coupling
lead to ‘‘topological insulators’’ in two [8–10] and three
[11–13] dimensions.

By contrast, at present there is no experimental obser-
vation that has been associated with the nonvanishing
Berry phase that is expected in metals that break inversion
symmetry. However, the helicity-dependent photocurrent
in an optically active metal contains a Berry-phase contri-
bution, as shown recently by Deyo et al. [14], who give a
semiclassical transport analysis of photocurrents at linear
order in applied intensity. We believe that this effect, also
known as the circular photogalvanic effect (CPGE), is
quite fundamental and differs in important ways from
previous Berry-phase phenomena: it is nonlinear in electric
field, frequency dependent, and controlled by the Berry-
phase contribution at low frequency.

In this Letter we compute the Berry-phase contribution
to helicity-dependent photocurrents in realistic circum-
stances, in order to allow quantitative comparison with
recent experiments on semiconductor quantum wells. In
these systems, the Berry-phase contribution vanishes in the
bulk; the photocurrent is generated by quantum confine-
ment. We first give a simple derivation of the Berry-phase
contribution in two dimensions in the relaxation-time ap-
proximation. A microscopic tight-binding calculation for a
model GaAs (110) quantumwell is then described. It yields
a magnitude of the photocurrent that agrees well with
experiments by the Regensburg group [15–17]. Finally,
we show via an envelope-function approach that the
confinement-induced Berry phase in a general zinc blende
quantum well can be parametrized in terms of only two
numbers, one intrinsic to the bulk material and the other a
geometrical factor determined by the surface orientation
and well width.
Our starting point is the semiclassical equation for a

wave packet of Bloch electrons. The velocity vector has
two terms [2–5,18]. One is the familiar semiclassical ve-
locity, which is determined near a parabolic minimum by
the effective mass, and the other results from the change in
the spatial location of the electron within the unit cell as its
wave vector k moves through the Brillouin zone:

dxa

dt
¼ 1

@

@�nðkÞ
@ka

þF ab
n ðkÞdkb

dt
: (1)

In the second term, known as the anomalous velocity, the
Berry flux is written with the same symbol F ab as the
electromagnetic field tensor in order to stress certain sim-
ilarities. (The band index n is suppressed from now on as
we assume a single spin-degenerate partially occupied
band.) F ab is the curl of a ‘‘vector potential’’ obtained
by momentum-space derivatives of the periodic part of the
electronic eigenstates ukðxÞ (here @a ¼ @ka):

F abðkÞ ¼ @aAbðkÞ � @bAaðkÞ; (2)
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A aðkÞ ¼ �ihukðxÞj@aukðxÞi: (3)

As in electromagnetism, Aa is gauge dependent (i.e.,
changes under a phase change of Bloch states) but F ab

is gauge independent. It is also antisymmetric, and time-
reversal symmetry requires F abðkÞ ¼ �F abð�kÞ: The
semiclassical equations are valid for frequency ! up to a
cutoff determined by the intersubband gap [19]; in narrow
quantum wells, this cutoff is typically larger than the
inverse relaxation time 1=�.

In two dimensions, the Berry flux has only one nonzero
component F 12 ¼ �F 21, which can be pictured as a
vector �ðkÞ ¼ F 12ðkÞẑ pointing out of the 2D plane.
The anomalous velocity leads to a net current if _k�
�ðkÞ has a nonzero average over the electron distribution.
In the relaxation-time approximation, _k is constant over
the electron distribution. In the parabolic approximation,
the ground-state distribution of electrons is circular. Time-
reversal symmetry implies that �ðkÞ averages to zero in
the ground-state electron distribution.

Even without a calculation, we can obtain some intuition
for how the anomalous velocity will lead to helicity-
dependent photocurrents if �ðkÞ is proportional to kx,
which is equivalent to the symmetry of the GaAs quantum
well discussed below. Consider a low-frequency circularly
polarized incident wave whose electrical field E lies in the
plane of the 2D system. If the relaxation time � is short
compared to the period of the incident wave, so that!� �
1, then the instantaneous distribution in k space is dis-
placed from the ground state, and this displacement circles
with frequency ! (Fig. 1). At an instant when eE points
along þx̂, the average of �ðkÞ is along þẑ, while the
electron distribution has _k along�ŷ according to the sense
of circular polarization. This gives a current directed along
the x axis, and the same direction of current is obtained
after a half-period.

More formally, the current density j arising from the
anomalous velocity in Eq. (1) is

j ¼ e
Z d2k

4�2
½ _k��ðkÞ�gðkÞ; (4)

where gðkÞ is the deviation from the ground-state conduc-
tion electron distribution. Within the relaxation-time ap-
proximation with isotropic mean-free time �, we have

gðkÞ ¼
�
eE � vnðkÞ
1=�� i!

þ c:c:

��
@f

@�

�
0

(5)

and _k ¼ eE=@þ c:c: (As in the AHE [20], impurity fields
are not included in the anomalous velocity). Here vnðkÞ is
the normal velocity rk�ðkÞ, and the partial derivative of
the Fermi function f with respect to energy � is evaluated
at the chemical potential. The optical field E is specified in
phasor notation: EðtÞ ¼ ðExx̂þ EyŷÞei!t. The Berry flux

is taken to be�ðkÞ ¼ �kxẑ for some constant � with units
of volume, because a Berry flux linear in k is required for
the effect to appear at quadratic order, and any linear
combination of kx and ky can be brought to the above by

a rotation. For a circular Fermi surface and low enough
frequency that the semiclassical equation is valid, the dc
current density jdc is the real part of

~j ¼ �e3

4m�2

i!ðE� ẑÞ
1=�2 þ!2

Z
d2kkxðE� � kÞ

�
@f

@�

�
0
: (6)

Switching to polar coordinates, the k integral becomes

Z
k3dkd�ðcos�ÞðE�

x cos�þ E�
y sin�Þ

�
@f

@�

�
0

¼ 2�m2

@
4

E�
x

Z
�d�

�
@f

@�

�
0
¼ � 2�m2

@
4

E�
x�F; (7)

where �F is the Fermi energy. Inserting this result into the
complex current density [Eq. (6)] gives

jdc ¼ �ne3

2@2
1

1=�2 þ!2
½i!ðExE

�
y � EyE

�
xÞx̂

þ 1=�ðExE
�
y þ EyE

�
xÞx̂þ jExj2ŷ�: (8)

In Eq. (6) we substituted �F ¼ �@2n=m where n is the
electron areal density and restored a factor of 2 for spin.
Here j is a 2D current density (current per unit length).
The first two terms on the right-hand side of Eq. (8) are

Berry-phase contributions to the circular (CPGE) and the
linear (LPGE) photogalvanic effects, respectively. The
LPGE, in which the photocurrent is maximal for linearly
polarized light, is allowed in all acentric media. The
CPGE, which is maximal for circular polarization and
changes sign with helicity of the light wave, is allowed
in the subset of acentric point groups that are optically
active, or ‘‘gyrotropic.’’ The last term on the right-hand
side of Eq. (8) is similar to typical photovoltaic effects in

kx

ky

dk/dt

eE

v1

v0

FIG. 1 (color online). Snapshot of electron distribution in a
circularly polarized wave. The electron distribution is pushed
away from the ground state (solid circle) by an amount �k ¼
eE�=@ that is small relative to the Fermi wave vector kF for
accessible fields. Here we show the component of dk=dt that
dominates the photocurrent for small !�, which switches with
the sense of circular polarization. At the time shown, the
conventional velocity v0 and anomalous velocity v1 are in
opposite directions. After a half-period, the conventional veloc-
ity changes sign but the anomalous velocity does not. The
directions assume � ¼ �kxẑ with �> 0.
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that the asymmetry of the medium fixes the sign of the
photocurrent.

Doped semiconductors are attractive systems in which to
search for the above effects because of their relatively long
relaxation times. However, zinc blende semiconductors
have too much symmetry to allow the above effects in
bulk. Instead, � must be generated by a confinement
potential such as arises in a quantum well structure. We
will compute this type of Berry phase by two approaches
and compare the results to photocurrent experiments.

The first approach is an explicit microscopic calculation
on model quantum wells. Consider the lowest conduction
subband of a (110) quantum well in GaAs and assume that
the crystal structure [Fig. 2(a)] is unmodified by creation of
the well, which then is simply an additional electrical

potential. The spacing between (110) planes is
ffiffiffi
2

p
a=4 ¼

2:00 �A with lattice constant a ¼ 5:65 �A. The maximal
remaining point group symmetry is C2v: there are two
mirrors, in (110) and ð1�10Þ planes, and a � rotation around
[001] that is the product of the mirrors. An asymmetric
well potential eliminates the (110) mirror and the rotation,
reducing the symmetry to Cs. Either symmetry allows a
nonzero Berry-phase parameter �.

Our computational approach starts from reference tight-
binding parameters for conduction and valence bands in
GaAs [21]. It is known that this tight-binding model gives a
roughly correct band structure, but overestimates the band
gap and effective mass. Spin-orbit coupling is ignored
since in the conduction band it is weak compared to orbital
effects. We study non-self-consistent quantum well poten-
tials of various shapes and widths in order to isolate the
parameters controlling the Berry phase.

The resulting Berry-phase factors for a variety of quan-
tum well potentials are given in Fig. 2(b). We find that � is

on the order of 1 �A3 and decreases with increasing well
width. For comparison to experiment, consider the current
J ¼ jxL from optical power P illuminating a square of side
L. The CPGE current for circular polarization is

J ¼ G

�
4���mP

e@L

�
!�

1þ!2�2
; (9)

where n was eliminated in favor of the Drude conductance
G ¼ ne2�=m and � ¼ e2=ð4��0@cÞ � 1=137 is the fine
structure constant. The quantity in parentheses can be
viewed as an effective voltage that combines with the
Drude conductance. From the above formula, P ¼ 1 W
incident on a 1 mm� 1 mm area of quantum well with
Drude conductance 10�2 mho leads to a peak current of

1.16 nA at !� ¼ 1, where we have taken � ¼ 1 �A3 and
used the effective mass 0:067me of conduction electrons in
GaAs. Currents of this magnitude are found by the
Regensburg group in experiments on doped semiconductor
quantum wells and heteroepitaxial interfaces [15–17].

Extending the tight-binding results given above to a
broader range of experiments requires understanding the
confinement-induced Berry phase in an arbitrary quantum

well. We choose an approach similar to the envelope
approximation for energy bands in a quantum well [22].
A three-dimensional zinc blende semiconductor like GaAs
is acentric but nevertheless has no Berry-phase photocur-
rent at first order in the applied intensity. Microscopically,
near the Brillouin zone origin � the remaining symmetries
restrict the form of the Berry flux to be in the T1 repre-
sentation; � is not linear in k near � but instead

� ¼ �ðkxðk2y � k2zÞ; kyðk2z � k2xÞ; kzðk2x � k2yÞÞ: (10)

The constant � controls all Berry-phase effects near � and
reflects changes in the spatial structure of orbitals, includ-
ing their angular momentum composition, with k.
Adjusting parameters in the GaAs tight-binding model
shows that the microscopic origin of � is almost entirely
the mixing of s and p orbitals away from �.
A quantum well can reduce the symmetry and combine

with � to allow a linear photocurrent. Results on the (110)
well (Fig. 2) suggest that the detailed form of the confined
state is not too important, so we take a Gaussian wave
packet of conduction band states:

c 2Dðx; y; zÞ ¼ C
Z

e�k2z	
2
eik�rukðx; y; zÞdkz: (11)

This wave function combines the intra-unit-cell depen-
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FIG. 2 (color online). Berry phase in (110) quantum wells.
(a) Positions of atoms (Ga gold, As blue) within (110) planes of
GaAs showing inversion asymmetry. Shadowed atoms are in the
next plane above or below. (b) Strength of Berry phase factor
� ¼ @�=@k for (110) quantum wells: square wells of depth
0.25 eV and 0.5 eV, Gaussian well of depth 0.25 eV, and
triangular well of depth 0.5 eV. The wave function width

2
ffiffiffiffiffiffiffiffih~x2ip

(horizontal axis), ~x ¼ ðxþ yÞ= ffiffiffi
2

p
changes with well

potential and determines � almost independently of well shape.
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dence u of the conduction band with a Gaussian envelope
on longer scales. C is a normalization constant. (For sim-
plicity, we now take coordinates with ẑ perpendicular to
the well plane to write the envelope expression). The wave
function is localized in the ẑ direction, with hz2i ¼ 	2 for
	 much larger than a unit cell, i.e., when the envelope
approximation is applicable.

The above wave function is a 2D Bloch state, and the 2D
Berry flux F2D

xy arises from the 3D Berry flux of the original

crystal. The envelope result is easily stated: the 2D Berry
flux averages the 3D Berry flux over kz,

F2D
xy ðkx; kyÞ ¼

R
e�2	2k2zF3D

xy ðkx; ky; kzÞdkzR
e�2	2k2z dkz

: (12)

For the (110) well discussed above, inserting the 3D Berry-
phase strength � to compute the 2D Berry-phase coeffi-
cient � gives a simple function of �, the well width 	, and
a dimensionless factor g0 set by well direction:

� ¼ g0�

	2
¼ � �

8	2
; (13)

which is the curve shown in Fig. 2 with � ¼ �410 �A5

calculated from our bulk tight-binding wave functions.
[Note that the coordinate system used to derive Eq. (8) is
rotated by 45	 relative to the GaAs coordinates for a (110)
quantum well.] Correlation methods could be used on a
single unit cell to estimate � in more complicated
materials.

The same approach to compute the confinement-induced
Berry-phase can be applied to other materials and well
geometries. For example, the geometrical factor of g0 ¼
�1=8 in Eq. (13) is modified in a (11n) well to

gn ¼ n2 � 1

ð2n2 þ 4Þ3=2 : (14)

The vanishing at n ¼ 1 is expected because a (111) quan-
tum well has an extra symmetry (a threefold rotation axis).

If the Berry-phase mechanism of photocurrents in quan-
tum wells can be confirmed experimentally, Berry-phase
phenomena will have been observed in all the four basic
materials classes, magnetic and nonmagnetic metals and
insulators. However, just as in the case of the AHE in TR-
breaking metals, other symmetry-allowed mechanisms co-
exist with the Berry-phase contribution. Only after many
years of debate has it been established that the Berry-phase
mechanism for AHE is dominant in certain regimes of
temperature and disorder.

We believe the Berry-phase contribution to photocurrent
in acentric metals can be identified more easily, through its
signature dependence on the frequency and polarization
state of the light. For example, Eq. (8) predicts that the
CPGE and LPGE effects are linked; the Berry-phase gen-
erates both with equal magnitude, and they vary with
frequency like the imaginary and real parts of the Drude
conductance, respectively [14]. Moreover, the Berry-phase
mechanism is readily distinguished from alternate mecha-

nisms involving intersubband effects (either spin or orbital)
by its dependence on the angle of incidence, �, of the light.
While the Berry-phase currents are driven by in-plane
components of the optical field, the intersubband mecha-
nisms are driven by Ez as well. Thus the Berry-phase
photocurrents vary strictly as cos�, while intersubband
response has terms proportional to both cos� and sin�. In
this regard, the measurements of CPGE in a (113) quantum
well by Ganichev et al. [15] are highly suggestive;
although both cos� and sin� dependences are allowed by
symmetry, only the cos� variation is observed.
Finally, we suggest that the envelope approximation

developed here can be applied to confinement-induced
Berry-phase phenomena in a wide variety of hetero-
junctions and quantum wells. Beyond interest in the effect
per se, measurements of helicity-dependent photocurrents
could be used as a means to obtain the leading nonzero
Berry phase in many materials, in the same way as other
transport measurements are used to obtain the parameters
of conventional Fermi liquid theory.
The authors acknowledge helpful conversations with

J. Folk and A. MacDonald and support from NSF DMR-
0804413 (J. E.M.) and DOE BES (J. O.).

[1] M.V. Berry, Proc. R. Soc. A 392, 45 (1984).
[2] R. Karplus and J.M. Luttinger, Phys. Rev. 95, 1154

(1954).
[3] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14 915 (1999).
[4] S. Teufel and H. Spohn, Rev. Math. Phys. 14, 1 (2002).
[5] G. Panati, H. Spohn, and S. Teufel, Commun. Math. Phys.

242, 547 (2003).
[6] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47,

1651 (1993).
[7] R. Resta, Ferroelectrics 136, 51 (1992).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[9] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science

314, 1757 (2006).
[10] M. Koenig et al., Science 318, 766 (2007).
[11] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[12] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R)

(2007).
[13] D. Hsieh et al., Nature (London) 452, 970 (2008).
[14] E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak,

arXiv:0904.1917.
[15] S. D. Ganichev et al., Phys. Rev. Lett. 86, 4358 (2001).
[16] H. Diehl et al., New J. Phys. 9, 349 (2007).
[17] P. Olbrich et al., Phys. Rev. B 79, 121302(R) (2009).
[18] F. D.M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[19] N.W. Ashcroft and N.D. Mermin, Solid State Physics

(Holt, Rinehart, and Winston, New York, 1976).
[20] T. Jungwirth, Q. Niu, and A.H. MacDonald, Phys. Rev.

Lett. 88, 207208 (2002).
[21] W.A. Harrison, Electronic Structure and the Properties of

Solids (Dover, New York, 1989), p. 54.
[22] G. Bastard, Wave Mechanics Applied to Semiconductor

Heterostructures (Editions de Physique, France, 1990).

PRL 105, 026805 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 JULY 2010

026805-4

http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRev.95.1154
http://dx.doi.org/10.1103/PhysRev.95.1154
http://dx.doi.org/10.1103/PhysRevB.59.14915
http://dx.doi.org/10.1142/S0129055X02001077
http://dx.doi.org/10.1007/s00220-003-0950-1
http://dx.doi.org/10.1007/s00220-003-0950-1
http://dx.doi.org/10.1103/PhysRevB.47.1651
http://dx.doi.org/10.1103/PhysRevB.47.1651
http://dx.doi.org/10.1080/00150199208016065
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1038/nature06843
http://arXiv.org/abs/0904.1917
http://dx.doi.org/10.1103/PhysRevLett.86.4358
http://dx.doi.org/10.1088/1367-2630/9/9/349
http://dx.doi.org/10.1103/PhysRevB.79.121302
http://dx.doi.org/10.1103/PhysRevLett.93.206602
http://dx.doi.org/10.1103/PhysRevLett.88.207208
http://dx.doi.org/10.1103/PhysRevLett.88.207208

