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Several emergent phenomena and phases in solids arise from configurations of the electronic Berry
phase in momentum space that are similar to gauge field configurations in real space such as magnetic
monopoles. We show that the momentum-space analogue of the “axion electrodynamics” term E · B plays
a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal
invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory
power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group
symmetry, but observed to high accuracy in classic experimental observations on alpha quartz.
Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the
interface between gyrotropic and nongyrotropic media.
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The topological consequences of time-reversal sym-
metry breaking in two-dimensional electronic systems have
been a focus of interest since the discovery of the quantum
Hall effects [1]. Similarly interesting phenomena arise from
breaking inversion symmetry (IS) in three-dimensional
systems—for example, in one type of “Weyl semimetal”
[2,3], possibly realized in TaAs [4–7], where IS breaking
allows for nontrivial topological states that contain pairs of
chiral gapless fermions. At least in insulators, it is now
widely known that there exist quantized transport phenom-
ena as a result of topological invariance. One goal of this
Letter is to demonstrate an example of topology in the
optical response of metals, which can be derived using
relatively simple semiclassical electron motion in low-
symmetry solids.
The main effect to be discussed, natural optical activity,

arises in materials that break IS but retain time-reversal
symmetry. We find two unexpected features of optical
activity, one of which may already have been observed in
alpha quartz, and obtain a general constraint on optical
activity in some frequency ranges that impacts some
designs for topological photonic devices. Electron dynam-
ics in such materials is subtle because, despite the lowering
of spatial symmetry, the energy spectrum itself remains
symmetric, i.e., ϵðkÞ ¼ ϵð−kÞ. Thus, the physics that
underlies transport anomalies in such systems must involve
the properties of the electronic wave functions themselves,
rather than their energy levels.
It is by now generally understood that the wave-function-

dependent transport properties of electrons on a lattice
are affected by the Berry curvature, ΩðkÞ, of the Bloch
states [8–11]. In the presence of a nonzero ΩðkÞ, the

semiclassical equations of motion for an electron wave
packet are modified to respect the duality between position
and momentum space,

_rðkÞ ¼ vðkÞ þ _k × ΩðkÞ
−ðℏ=eÞ _kðrÞ ¼ EðrÞ þ _r ×BðrÞ; ð1Þ

where vðkÞ ¼ ℏ−1∇kϵðkÞ, Ω ¼ ∇ × hukj − i∇kjuki, and
electron charge is ð−eÞ. From the symmetry of the modified
equations of motion with position and momenta, it is clear
that ΩðkÞ can be viewed as an effective magnetic field in
momentum space. In this Letter we introduce another
useful momentum-position space correspondence, involv-
ing the dual to the magnetoelectric coupling term in the
Lagrangian density, that is, Lijðr; tÞ ¼ αijEiBj.
The dual nature of the semiclassical equations suggests a

corresponding tensor in momentum space,

GijðkÞ ¼ viðkÞΩjðkÞ; ð2Þ

which turns out to play a fundamental role in a unified
theory of Berry-phase contributions to the transport and
optical properties of inversion-breaking media. The scalar
diagonal part of αij is topological and referred to as “axion
electrodynamics” [12–14], and the trace of Gij also has a
topological significance in multiple contexts.
As is clear from Eq. (1) the signature of nonzero ΩðkÞ is

the existence of an “anomalous” current transverse to the
applied force. For ac electric fields, the transverse current
manifests as the phenomenon of optical gyrotropy, in which
a medium exhibits a different index of refraction for left and
right circularly polarized light [15]. Gyrotropy in media
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with broken time-reversal symmetry is known as Faraday
rotation, whereas in time-reversal symmetric systems it is
usually referred to as “natural optical activity” (NOA).
Below, we develop a semiclassical theory of NOA origi-
nating from the Berry curvature of inversion-breaking
media, obtaining two new results. First, the gyrotropic
tensor, gij, that emerges from the topology of the Berry
curvature is traceless. This represents a constraint on the
components of gij beyond well-known relations imposed
by the point-group symmetry and is therefore a signature of
the Berry-phase mechanism. Tracelessness of the topologi-
cal gij potentially resolves an 80 year old mystery con-
cerning NOA in alpha quartz and other materials [16,17].
The second result is the existence of a surface current that
flows in response to an electromagnetic wave incident at
the interface between gyrotropically active and inactive
media. The amplitude of this surface current is precisely
that required to ensure that the rotation of the polarization
of light reflected from this interface is zero, as is required
by Onsager reciprocity in time-reversal invariant systems.
Our result obtained from the Berry-phase mechanism is
the first example in which the surface current required by
time-reversal symmetry emerges from a microscopically
derived constitutive relation.
Tracelessness.—As a preliminary step, we rederive the

Berry-phase contribution to the gyrotropy tensor in a
homogeneous time-reversal-symmetric material [18]. We
use a Berry-Boltzmann approach, in which the standard
calculation of linear response via the Boltzmann equation is
augmented by the anomalous velocity term in Eq. (1).
Solving the Boltzmann equation in the relaxation time
approximation yields fð1Þ, the change in the distribution
function to first order in the wave field Eðr; tÞ ¼
E expðiωt − iq · rÞ,

fð1Þ ¼ −∇kfð0Þ · δk; ð3Þ
where [19]

δk ¼ eE
ℏð1=τ − iωþ iq · vÞ : ð4Þ

For simplicity, we concentrate in the following on the
clean or high-frequency limit ωτ → ∞. The semiclassical
equations are valid as long as the frequency is below that
of interband transitions and neglect electron-electron inter-
actions (although incorporating electrons at the density-
functional level is simple just as for the intrinsic anomalous
Hall effect). The current that arises from the anomalous
velocity is given by [20]

j ¼ −e
Z

d3k
ð2πÞ3 f

ð0Þδ _k ×Ω; ð5Þ

where to first order in q,

δ _k ≈
−eE
ℏ

�
1þ q · v

ω

�
: ð6Þ

Substituting Eq. (6) into Eq. (5), we obtain

j ¼ e2

ℏ
E ×

Z
d3k
ð2πÞ3 f

ð0Þ
�
1þ q · v

ω

�
Ω: ð7Þ

The q-independent component of the integral in Eq. (7)
vanishes because time-reversal symmetry enforces
ΩðkÞ ¼ −Ωð−kÞ. However, as Fig. 1 illustrates, the
q-dependent term can be nonzero in the presence of IS
breaking. An explicit example of a tight-binding
Hamiltonian with Berry curvatures of the required type
was previously given [18]. The ellipsoid represents a
typical Fermi surface, and the two parallel disks are slices
of momentum space perpendicular to the wave vector of the
light. Focusing on two representative points related by time
reversal, we see that the acceleration _k to first order in q
(shown as a red arrow) is proportional to v and is therefore
odd in k. Consequently, the second term in the integrand
of Eq. (7) is overall even and leads to a nonvanishing
transverse current.
Next, we reexpress Eq. (7) in the standard form for the

nonlocal constitutive relation,

jiðωÞ ¼ σijðωÞEj þ γijlðωÞ
dEj

dxl
; ð8Þ

which relates the current to the first order of the spatial
derivative of the electric field [15]. Using Eq. (7),

γijk ¼
−e2

iℏω

Z
d3k
ð2πÞ3 f

ð0ÞϵijlΩlvk; ð9Þ

where ϵijl is the antisymmetric tensor. This response
derived from the Berry curvature satisfies the condition
γijl ¼ −γjil imposed by time-reversal symmetry [15,21].

FIG. 1 (color online). Momentum-space representation of the
Berry curvature mechanism for nonvanishing transverse current
in a metal with inversion-symmetry breaking. The ellipsoid
depicts a typical Fermi surface with slices oriented perpendicular
to the optical wave vector. The Berry curvature, electron velocity,
and acceleration to first order in an optical wave vector are
illustrated for two points related by time reversal.
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Because γijk is antisymmetric, the gyrotropic response is
usually expressed by its dual second-rank tensor gij, i.e.,
ji ¼ −iϵijkgklEjql. Converting to this notation,

gij ¼ −
e2

iℏω

Z
d3k
ð2πÞ3 f

ð0ÞvjΩi: ð10Þ

The trace of gij is given by
X
i

gii ¼ −
e2

iℏω

Z
d3k
ð2πÞ3 f

ð0Þv ·Ω; ð11Þ

which is zero for the ground state [11] or any other
distribution fð0Þ depending only on energy. To see that
the integral over occupied states of Ω · v vanishes even in
the presence of monopole singularities in the Berry
curvature, we write ℏvðkÞ ¼ n̂dε=dk⊥, where n̂ is normal
to the surface of constant energy in momentum space and
dk⊥ is the separation between two such surfaces whose
energy differs by dε. With this relation, the integral over
occupied states can be written [22]Z

d3k
ð2πÞ3 f

ð0Þv · Ω ¼
Z

μ

εmin

dε
Z
ε
dSΩ · n̂: ð12Þ

The integral is clearly zero in the absence of singularities in
Ω, as in this case ∇ ·Ω ¼ 0 for all k. However, the integral
still is equal to zero [22] in the presence of singularities
such as Weyl points since

Z
d3k
ð2πÞ3 f

ð0Þv ·Ω ¼ ðμ − εminÞ
X
n

qn; ð13Þ

which vanishes as the net monopole charge in the Brillouin
zone is zero because of lattice fermion doubling [23].
Tracelessness of gij has verifiable observable conse-

quences: it is equivalent to the statement that the sum of the
optical rotatory power measured along three principal axes
is zero. This rule, derived on the basis of Berry-Boltzmann
physics, goes beyond the constraints imposed by point-
group symmetry. There are 15 crystal classes in which
nonvanishing components of gij are allowed. Of these, 11
are chiral, indicating that all mirror symmetries are broken,
and four have broken inversion symmetry but are not chiral.
Point-group symmetry requires only these latter four
classes to have traceless gyrotropic tensors. Thus, it would
seem that for the other classes the observation of trace-
lessness would indicate the dominance of the Berry-phase
mechanism.
There are hints that the Berry-phase mechanism is

applicable to insulators as well as metals in the optical
properties of alpha quartz, one of the earliest and most
studied of condensed matter chiral systems [16,17,24].
Point-group symmetry applied to alpha quartz, which
belongs to crystal class 32, requires only that (in the
principal axis frame) two of the three diagonal elements
of gij are equal, and the off-diagonal components are
zero. Nevertheless, it is found experimentally that

g11 ¼ g22 ¼ −ð1=2Þg33; that is, the tensor is traceless over
a broad frequency range that extends from visible to near-
UV wavelengths. As it is extremely unlikely that this is
accidental, there is evidence that—at least in certain non-
metallic systems—a Berry-phase-related mechanism is
responsible for the gyrotropic response. A hint is found
in detailed ab initio calculations of alpha quartz and
trigonal Se [24], which identify a contribution that is
traceless within numerical error (the cv part in that work’s
notation). For a given material, measuring the trace of the
gyrotropy tensor tests whether the Berry mechanism
dominates other possible contributions to the gyrotropic
response, for example from the Bloch electron magnetic
moment (spin [25] or orbital) neglected in Eq. (1).
The gyrotropic response that results from the Berry

curvature is related to the question of the existence of a
“chiral magnetic effect,” a current induced by a magnetic
field in the presence of pairs of Weyl nodes (related to a
triangle anomaly [23,26–30]). According to the semiclass-
ical theory [22], the equilibrium current is

j ¼ e2

ℏ
B
Z

fð0Þd3k
ð2πÞ3 Ω · v; ð14Þ

and it is therefore zero according to the argument presented
above. However, the constitutive relation we have derived
for the nonlocal current gives a closely related expression
for the current that accompanies a plane electromagnetic
wave. Consider a plane wave propagating along a principal
axis of the crystal, which we take to be the z direction.
According to Eq. (10),

jx ¼
−e2

ℏ
Bx

Z
fð0Þd3k
ð2πÞ3 Ωzvz; ð15Þ

where we have used the Maxwell relation ∇ ×E ¼
−∂B=∂t. Thus, the correct constitutive relation for the
Weyl state is closely related to Eq. (14), but with the crucial
difference that the response must be intrinsically aniso-
tropic because of the tracelessness of Ωivj, and the current
must vanish if the magnetic field is static.
Interfacial surface current.—Combining Eq. (8) with

Maxwell’s equations yields a difference in the index of
refraction for left and right circular polarizations,
δn� ≡ nþ − n−. The latter implies a rotation of the plane
of linear polarization with propagation through the
medium, which is the phenomenon of NOA. At first
glance, δn� ≠ 0 would appear to predict polarization
rotation on reflection as well. The Fresnel formula for
normal incidence reflection yields a Kerr angle,

ΘK ¼ δr�
r

¼ iδn�
n2 − 1

: ð16Þ

However, the expectation that δr� ≠ 0 has been shown to
violate the general reciprocity principle for electromagnetic
fields interacting with time-reversal invariant media in
equilibrium [31]. The seeming paradox is reconciled by
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a historically somewhat obscure [21,32,33] (but recently
rediscovered [34]) constraint on the nonlocal response
functions imposed by time-reversal symmetry in media
in which the gyrotropic coefficient varies in space, for
example, at an interface. While the validity of this con-
straint is not in question, there has yet to be a derivation of a
nonlocal constitutive relation in spatially varying chiral
media that is consistent with time-reversal symmetry.
A strength of the semiclassical approach is that combin-

ing real-space and momentum-space dependence is easier
than with diagrammatic methods. We now include the
spatial variation of fð0Þ and show that the tracelessness of
Gij is the crucial ingredient needed to obtain a fully
consistent constitutive relation at the interface.
Imagine that by either spatial variation of chemical

composition or some form of gating (see Fig. 2), a step
in potential, VðzÞ, is engineered that is sufficiently slow on
the scale of the mean free path such that the semiclassical
equations remain valid. We calculate the interfacial current
in response to a plane electromagnetic wave with wave
vector qz, to the order ExV 0ðzÞ.
Including VðzÞ, the equilibrium distribution function fð0Þ

becomes a function of z, leading to an extra term in the
Boltzmann solution, fð1Þ ¼ ð∂fð0Þ=∂zÞδz, where

δz ¼ e
ℏ
ðE ×ΩÞz

iω
ð17Þ

is the distance traveled in the z direction by a carrier in one
cycle of the optical frequency. A detailed derivation of the
component of fð1Þ to the order V 0ðzÞE is given in the
Supplemental Material [35]. The additional current arising
from the spatial variation of fð0Þ is

j ¼ −e2

iℏω

Z
d3k
ð2πÞ3

∂fð0Þ
∂z ðE × ΩÞzvðkÞ: ð18Þ

When the width of the interface is much less that the
wavelength of the light, the relevant observable is the
surface sheet current,

K ¼ −e2

iℏω

Z
d3k
ð2πÞ3 Δf

ð0ÞðE ×ΩÞzvðkÞ; ð19Þ

where Δfð0Þ is the change in fð0Þ across the interface.
Equation (19) corresponds to a constitutive relation for the
interfacial current of the form Ki ¼ GijEj, where the
surface conductance is given by

Gij ¼
e2

iℏω

Z
d3k
ð2πÞ3Δf

ð0ÞϵkjzΩkðkÞviðkÞ: ð20Þ

If the region z < 0 is emptied of carriers, such that we have
an interface between gyrotropically active and inactive
media, then Δfð0Þ ¼ fð0Þ. The antisymmetric part of the
surface conductance is

1

2
ðGxy −GyxÞ ¼

e2

iℏω

Z
d3k
ð2πÞ3 f

ð0ÞðΩxvx þΩyvyÞ; ð21Þ

or 1
2
ðGxy −GyxÞ ¼ gzz, by the tracelessness of gij. Finally,

we obtain for the antisymmetric part of the current response
at the optically active-inactive interface

jx ¼ gzz

�
∂z þ

1

2
δð0Þ

�
Ey: ð22Þ

While the factor of 1=2 appearing in Eq. (22) can be shown
to be required by time-reversal symmetry [21], it has not
previously been derived from a microscopic or phenom-
enological theory. For uniaxial materials the constitutive
relation Eq. (22), together with standard boundary con-
ditions on the fields, yields zero polarization rotation on
reflection, as required by reciprocity.
We note that in Eq. (22), time-reversal symmetry is

preserved globally, but not locally. The conductivity tensor
that describes the interfacial current violates Onsager
reciprocity, as it is a local relation with antisymmetric
off-diagonal components, i.e., Gxy ≠ Gyx. Onsager reci-
procity and time-reversal symmetry are restored only when
considering the combined bulk and surface response. This
behavior is reminiscent of 3D topological insulators, whose
surface states have an odd number of Dirac fermions, which
is impossible for a 2D time-reversal-symmetric system in
isolation. It would be worthwhile to understand possible
additional electronic contributions to gyrotropy beyond the
semiclassical static limit, as has been done for the chiral
magnetic effect [36] in a Weyl semimetal model, where the
“uniform” (not static) effect is nonzero but not quantized.
The Weyl semimetal TaAs [4–7], along with the similar
candidate materials NbAs [37–39] and TaP [40,41], breaks
inversion, but its space group (l41md, No. 109) has point
group 4mm, which does not allow optical activity. Either
finding a different Weyl semimetal with lower symmetry or
lowering the symmetry of the TaAs family (e.g., by strain)
would lead to a useful test bed for the Berry-phase
contribution to gyrotropy, as the magnitude of the Berry
curvature is large near the Weyl points, leaving aside the
possibility of open Fermi surfaces [42].

FIG. 2 (color online). Illustration of a slab of an acentric metal
in which electrons are depleted underneath a gate electrode. In the
presence of an electromagnetic wave, counterpropagating sheet
currents appear at the interfaces between optically active and
inactive media.
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The results presented here are important for the emerging
field of topological photonics [43]. To date, this research
has focused mainly on intricately fabricated metamedia in
which response functions vary periodically on the scale of
the optical wavelength. An example of a topological
photonic state that can be created in this way is an analogue
of the quantum Hall effect [44], but interfaces between
conventional materials, which require less difficult fabri-
cation, can also support topological interface states [45,46].
However, in Ref. [45] the gyrotropic response is modeled
as either a pseudoscalar or a traceful tensor with a single
diagonal component, both of which are excluded by our
analysis. Thus, one implication of our findings is that the
future analysis of chiral-nonchiral interfaces should include
the traceless property of gij. Finally, an important open
question is the relationship between the interfacial photonic
states generated by gij and the time-reversal protected
electron conductance, gzz.
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