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In commemoration of Paul Drude (1863–1906)

More than one hundred years ago Paul Drude derived the frequency-dependent conductivity σ(ω) of a gas of
point charges, showing that the width of the spectrum was related to the scattering rate of carriers. Seventy
five years later, in the late 1970’s and early 1980’s, it was recognized that σ(ω) of a two-dimensional super-
conductor above it’s transition temperature Tc could be described by the Drude response of interpenetrating
gases of electrons and vortices. Here we describe measurements of σ(ω) in the high-Tc superconductor
system Bi2Sr2Ca1−xDyxCu2O8+δ (BSCCO) using time-domain THz spectroscopy that provide evidence
for vortices above Tc. We compare this evidence with results obtained by other probes of fluctuations in
cuprate superconductors.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The defining characteristic of a superconductor is the breaking of gauge symmetry and the establishment of
long-range phase order. The phase order is maintained by the appearance of a phase stiffness, a measure of
the energy cost of fluctuations from spatial uniformity. The free energy of such fluctuations is proportional
to

∫
dDrρs∇2φ where ρs is the stiffness of the phase, φ, of the superconducting order parameter. A unique

aspect of two dimensions (D = 2) is that ρs has the units of energy. We will see that the ratio of ρs to the
temperature T plays a crucial role in the theory of σ(ω) of the superconductor.

If phase rigidity defines the superconducting state, its destruction as T is raised through Tc must reflect the
loss of phase order. The Kosterlitz-Thouless-Berezinski (KTB) [1–3] theory of melting in 2D demonstrated
that the restoration of symmetry at Tc takes place via the thermal generation of free vortices. Below Tc,
vortices exist as bound pairs of opposite vorticity. The loss of long-range phase order at Tc occurs when
the first pair of vortices unbinds. Perhaps the most celebrated prediction of the theory is that these first free
vortices appear when T reaches the KTB transition temperature TKT ≡ πρs/8, at which point ρs drops
discontinuously to zero [4].

The KTB theory implies that the “normal” state above Tc is in reality a vortex plasma (VP), a gas
of bound and free vortices. However, the VP state can be difficult to observe in conventional, relatively
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clean BCS superconductors. Vortices exist in the normal state only when the order parameter amplitude
is well-defined, that is, in the interval between Tc and the mean-field transition temperature TMF (the
T to which superconductivity would persist if phase fluctuations could be suppressed). In clean-limit 2D
superconductors, where the zero-T phase stiffness ρs(0) is essentially the Fermi energy, the VP exists only
in a narrow range TMF − Tc ∼ T 2

c /EF .
The high-Tc cuprate superconductors are in the clean-limit and thus one might naively expect a very

limited VP regime. However, two aspects of these materials suggest the possibility of a larger range of
phase fluctuations [5]. The first is strong electron-electron correlations, which cause ρs(0) to vanish as x,
the deviation from one-electron per site, goes to zero. If the pairing amplitude remains nonzero in the same
limit, then we would expect a VP regime whose size relative to Tc would grow as x → 0. The second factor
is spatial inhomogeneity, which has been observed in the cuprates on a variety of time and length scales.
The simplest example is static inhomogeneity in the local value of TMF , such as obtained in a granular
superconductor. Here the size of the phase fluctuation regime can be arbitrarily large, extending from the
largest local values of TMF to the smallest.

Quantifying the extent of the VP state in T and x can play a major role in unravelling the physics of
the cuprates, where a central question is the origin of the crossovers above Tc seen by different probes.
For example, if TMF (x) can be determined, then a comparison with the pseudogap onset temperature,
T ∗(x), will address the long-standing question of the relationship between superconducting pairing and the
correlations that give rise to the pseudogap. In addition, characterizing TMF (x) in cuprate systems known
to possess different degrees of spatial inhomogeneity helps to define where granularity (in its most general
sense) plays a role in determining Tc.

As is the case with most issues in the cuprates, determining the boundaries of VP state has not proved to
be straightforward. Recently, evidence for a VP regime above Tc has been obtained from terahertz (THz)
conductivity [6], Nernst effect [7–13], and magnetic susceptibility measurements [14, 15]. However, the
different probes appear to yield different crossover temperatures. The question we address in this paper is the
interpretation of the THz conductivity and its relationship to other probes of superconducting fluctuations.
In the next section we review theoretical predictions for ac conductivity in the VP state. In Sect. 3 we
compare these predictions with experimental results. In Sect. 4 we conclude with a discussion of the ac
conductivity in the context of other probes of superconducting fluctuations in the normal state.

2 Ac conductivity in the vortex plasma regime

The condensate contribution to the ac conductivity of a 2D superconductor above Tc obeys the scaling
relation,

σ(ω)
σ0

=
Ω0

Ω
S(ω/Ω), (1)

where Ω is the inverse of the order parameter correlation time and σ0 is the conductivity as Ω approaches its
bare value Ω0 [16]. (To obtain the total conductivity we must add the Drude contribution from the normal
state quasiparticles). The ac conductivity of a VP is a specific case of this general relation. Many of the
properties of the VP conductivity can be obtained by considering the limits of high and low frequency. In
the ω/Ω → ∞ limit, vortices are static on the scale of the time-variation of the applied current and the
conductivity approaches that of a superconductor, that is σ(ω) → σQρs0/(−iω), where σQ ≡ e2/�d and
d is the bilayer thickness. This requires that S(ω/Ω) → Ω/(−iω) and identifies σ0Ω0 as σQρs0. Here
ρs0 is the “bare” superfluid density, as distinguished from the “renormalized” superfluid density ρs. The
existence of a superfluid response at high frequency, i.e., ρs0 > 0, in a regime where ρs = 0, is the defining
characteristic of the VP state. In the opposite, ω/Ω → 0 limit, the vortices move in response to the current,
and the conductivity is the inverse of the flux-flow resistivity, ρff = (nF φ2

0D/T ), where nF is the density
of free vortices, φ0 is the flux quantum, and D is the vortex diffusivity. Combining the two limits, we can
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infer that Ω = π2(ρs0/T )DnF , indicating that Ω is essentially the inverse time required for vortices to
diffuse the average distance between them. We can also express Ω in the form (Ω/Ω0) = nF Ac, where Ac

is the area of the vortex core and Ω−1
0 ≡ [π2(ρs0/T )(D/Ac)]−1 is roughly the time for a vortex to diffuse

a core radius. The dimensionless factor nF Ac is the probability that a site that can accommodate a vortex is
occupied. Finally, we note that as σ0Ω0 = σQρs0, the scaling relation can be rewritten in the form [17–19],

σ(ω)
σQ

=
ρs0

Ω
S(ω/Ω). (2)

As Eq. (2) indicates, the behavior of σ(ω, T ) in the VP state is largely determined by Ω(T ). The features of
σ(ω, T ) that identify a KTB transition follow from the essential singularity in Ω(T ) that is predicted to occur
at TKT . In view of the importance of Ω(T ) in identifying and characterizing the transition to the VP state,
below we briefly describe a heuristic derivation of this quantity, following a discussion by Minnhagen [18].

As we have seen, Ω(T ) depends linearly on the free vortex density, nF . On the other hand, nF itself
depends upon Ω(T ) because the latter is connected to the intervortex screening length ξ(T ), through the
relation, ξ2 = D/Ω, or equivalently, ξ2 = π2nF ρs0/T . These relationships lead to a self-consistency
condition that ultimately determines Ω(T ). Specifically, we note that nF is given by a Boltzmann factor,
nF Ac = exp(−EV /T ), where EV is free vortex creation energy. EV is the sum of the core energy Ec

and one-half the energy required to separate a vortex-anti-vortex pair to infinity. Because the logarithmic
inter-vortex interaction is cutoff at ξ, we have that EV = Ec + (πρs0/4)ln(ξ/ξ0), where ξ0 ∼ A

1/2
c .

Satisfying the two conditions imposed on nF leads to the T dependence of the phase fluctuation rate,

Ω
Ω0

=
(
e−Ec/T

) T
T −πρs/8

. (3)

From Eq. (3) we see that Ω(T ) goes to zero very rapidly as T approaches TKT ≡ πρs/8.
Although all VP’s obey Eq. (2), all VP’s are not the same. The “fingerprints” of a specific VP state are the

microscopic length and frequency scales, ξ0 and Ω0, the bare phase stiffness, ρs0(T ), and the vortex core
energy Ec(T ). Any information regarding the physics that underlies a given VP state must come from these
parameters, as once they are specified the phase correlation time Ω(T ) and length ξ(T ) are determined by
universal VP relations.

Historically, interest in the phase fluctuations of 2D superconductors has focused on T ’s very near to Tc,
where the predictions of a universal jump ρs and the essential singularity in Ω(T ) (or the corresponding
length scale ξ(T )) can be tested. However, the main interest in the context of the high-Tc cuprate supercon-
ductors is entirely different. It is clear that near Tc the transition cannot be of the KTB type because of the
nonzero (and in some compounds, strong) interlayer coupling. The focus shifts to the possibility of a VP
state arising when the layers decouple above Tc, and especially to the question of how high in T it might
persist.

3 Terahertz conductivity results

3.1 σ(ω, T ) of an underdoped (Tc=71 K) sample

In principle, σ(ω) measured over any range of frequency can directly probe the persistence of ρs0 above Tc.
However, in practice, σ(ω) rapidly becomes too small to be measured when ω/Ω � 1. Thus sensitivity to
ρs0(T ) is lost well below TMF if the measurement frequency range lies much below Ω0. We can estimate
Ω0 from the Bardeen-Stephen [20] assertion that ρff extrapolates linearly to the normal resistivity, ρn, as
nF Ac → 1, which leads to D/Ac = ρnT/π2 and Ω0 = ρnρs, where ρn ≡ ρnσQ. Evaluating Ω0 for
parameters appropriate to the cuprates yields Ω0 ∼ 1-10 THz. Thus, in order to probe the full extent to
which ρs0 survives in the normal state it is necessary to probe the conductivity on the THz frequency scale.

We have measured σ(ω) in a set of underdoped Bi2Sr2Ca1−xDyxCu2O8+δ (BSCCO) samples using the
technique of time-domain transmission spectroscopy in the range from 0.1-0.6 THz [6]. Direct measurement
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Fig. 1 The complex conductivity σ measured at 100 GHz,
as a function of the temperature T . The real part, σ1, is mul-
tiplied by 5 for ease of comparison with the imaginary part
σ2.

of electric fields rather than power yielded both the real and imaginary parts of σ(ω), which is crucial for
the scaling analysis. The samples were thin (∼ 50 nm) films grown by atomic layer-by-layer epitaxy. Fig. 1
shows the real and imaginary parts of the conductivity, σ1 and σ2, at 100 GHz for an underdoped BSCCO
film with Tc=71 K. The dissipative component, σ1, has a peak centered near Tc superposed on a rising
background, while σ2 becomes observable near 100 K.

The quantity best suited to show the persistence of ρs0 into the normal state is TΘ(ω) ≡ ωσ2(ω, T )/σQ,
which approaches ρs0(T ) when ω � Ω. Fig. 2 shows TΘ(ω) as a function of T on a semilog scale for the
sample shown in Fig. 1 and for our most underdoped sample with Tc=33 K. This plot identifies a crossover
in the dynamics with increasing temperature. At low T , TΘ is frequency independent. As T increases, TΘ
fans out, with lowest frequency data decreasing most rapidly. All samples that we have measured show the
behavior described above. Furthermore, we find that for all samples the value of TΘ at the crossover, and
the T at which it occurs, are related linearly. The dashed line in Fig. 2 shows that the crossover is described
by the simple relation, TΘ = (8/π)T .

The appearance of a crossover at the KT temperature suggests that we analyze σ(ω) further using the
scaling relation (Eq. (2)). By comparing σ(ω) to Eq. (2), we can extract both ρs0(T ) and Ω(T ). As the
first step, we note that the phase of the complex conductivity, φ ≡ tan−1(σ2/σ1), equals the phase of
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Fig. 2 The dynamic (frequency dependent) phase-stiffness
temperature, TΘ(ω) ≡ ωσ2(ω)/σQ as a function of temper-
ature T . Data are shown for two samples, one with Tc=33 K
(left side) and the other with Tc=71 K (right side). The dashed
line corresponds to the KTB condition for 2D melting, i.e.,
phase stiffness and temperature related by TΘ = (8/π)T .
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Fig. 3 Conductivity phase angle, φ =
tan−1(σ2/σ1), and normalized conductiv-
ity magnitude |σ|, plotted as a function of
the reduced frequency ω/Ω(T ). Each plot
comprises measurements with T in the range
from 64 to 91 K, and frequency from 100 to
400 GHz.

S(ω/Ω), and therefore depends only on Ω. In determining φ we include only the fluctuation contribution
to σ1, which is obtained by subtracting the broad quasiparticle background from the peak seen in Fig. 1.
With the appropriate choice of Ω(T ), φ(T ) should collapse to a single curve when plotted as a function of
the normalized frequency ω/Ω. Once Ω(T ) is known, ρs0(T ) is obtained from a collapse of the normalized
conductivity magnitude, (�Ω/ρs0)|σ(ω)|/σQ to |S(ω/Ω)|. Fig. 3 shows the collapse of the data to the phase
and magnitude of S. As anticipated, S approaches a real constant in the limit ω/Ω → 0, and approaches
iΩ/ω as ω/Ω → ∞.

In Fig. 4 we present the behavior of the bare stiffness and phase-correlation time obtained from the scaling
analysis of σ(ω). The main panel contrasts ρs0(T ) (referred to as T 0

Θ in the legend) with the dynamical
phase stiffness TΘ(ω) measured at 150 and 400 GHz. The inset shows τ ≡ Ω−1 as a function of temperature
together with hashes that highlight the region where τ < �/kBT .
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Fig. 4 The bare phase-stiffness ρs0 and phase corre-
lation time τ ≡ Ω−1 found from the scaling analysis of
σ(ω, T ), plotted as a function of T . Main panel: Com-
parison of ρs0, shown as solid circles, with TΘ(ω) at
150 GHz (open squares) and at 400 GHz (open dia-
monds). Inset: τ on a semi-log plot. The hash marks
define a region where τ is less than the lifetime of elec-
trons in the normal state, �/kBT .
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Fig. 5 Phase correlation time τ(T ) as calculated from
Eq. (3), with parameters as given in text.

The parameters displayed in Fig. 4 suggest that while phase correlations indeed persist above Tc, their
effect on conductivity vanishes well below T ∗. Near 95 K (in this sample), τ falls to �/kBT , which is ap-
proximately the normal quasiparticle lifetime. Above this T , any contribution to σ(ω) from superconducting
fluctuations becomes indistinguishable from the response of the normal electrons.

3.2 Comparison with VP predictions

In this section we compare the THz measurements on the Tc=71 K sample with theVP predictions, beginning
with τ(T ) as obtained by scaling analysis of σ(ω).According to Eq. (3), τ(T ) depends on ρs0(T ), τ0 ≡ Ω−1

0 ,
and Ec. Fig. 5 shows a plot of τ calculated according to Eq. (3) based on ρs0(T ) shown in Fig. 4, with
Ec = 0.3ρs0 and τ0 = 0.14 picoseconds. The theoretical curve captures the main features of the data. The
value of τ0 is in reasonable agreement with the prediction (ρnρs0)−1, which is 0.4 picoseconds for this
sample. The coefficient 0.3 can be compared with the Ginzburg-Landau prediction that Ec = 0.6ρs0 [21].
The vortices can be considered to be “cheap” [22–24] as the core energy is on the scale of ρs0, rather than
EF . The question of whether they are “fast” [25] as well, that is the relation of D to Bardeen-Stephen
prediction, will be addressed when we compare the THz conductivity and magnetic susceptibility, χ.

We turn next to the VP prediction for σ(ω, T ), which requires knowledge of the scaling function, S(ωτ),
in addition to ρs0(T ) and τ(T ). Minnhagen [18] has suggested a simple form, S2(ωτ) = 1/(1 + ωτ), that
is consistent with many computer simulations and experiments on model KTB systems. In Fig. 6 we show
the prediction for ωσ2(T )/σQ based the Minnhagen scaling function, for several values of ω that are close

Fig. 6 Dynamic superfluid density, ωσ2/σQ, calculated
according to the Minnhagen scaling function described in
the text, using ρs(T ) shown as solid line and τ as shown in
Fig. 5 as input parameters.
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Fig. 7 Left panel: conductivity phase and normalized magnitude as a function of scaled frequency for the 51
K underdoped sample. Right panel: bare phase stiffness, ρs, and dynamic phase stiffness, TΘ(ω), obtained
from the scaling analysis.
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Fig. 8 Left panel: conductivity phase and normalized magnitude as a function of scaled frequency for the 85
K underdoped sample. Right panel: bare phase stiffness, ρs, and dynamic phase stiffness, TΘ(ω), obtained
from the scaling analysis.

to 1/τ0. The strong singularity of τ(T ) causes all the curves to fan out near TKT , in reasonable agreement
with the THz measurements.

3.3 THz conductivity in samples with different hole concentration

To investigate how ρs0(T ) and τ(T ) depend on hole concentration, we analyzed the THz conductivity of
two additional underdoped BSCCO films, with Tc’s of 51 K and 85 K. The scaling analysis and ρs0(T ) are
shown in Figs. 7 and 8. In Fig. 9, we show τ(T ) for the three samples that were analyzed. The ρs0(T ) and
τ(T ) of the samples with Tc’s of 51 K and 85 K show the same features as the Tc=71 K sample considered
previously. The phase fluctuation rate reaches kBT/� at a T that is within 10-20 K above Tc and is well
below the pseudogap temperature T ∗. The superfluid density decays approximately linearly with T and
extrapolates to zero at roughly the same T at which the phase fluctuation rate reaches kBT/�.
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Fig. 9 The lifetime of phase fluctuations for
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dashed line illustrates the mean-free-time of nor-
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4 Comparison with other probes of superconducting fluctuations

Ong, Wang, and collaborators have explored superconducting fluctuations in a large number of cuprates
through detailed measurements of the Nernst effect [7–13], and magnetization [14,15]. As the theoretical
understanding of the fluctuation diamagnetism is more advanced, we first compare σ(ω, T ) and the magnetic
susceptibility, χ(T ). The latter quantity is directly related to ρs0(T ) and the phase correlation length, that
is, χ ∼ ρs0ξ

2. The dynamic conductivity evaluated at the phase fluctuation frequency, σ1(Ω, T ) is ∼ ρs0τ .
Thus χ(T ) and σ1(Ω, T ) are both proportional to ρs0, with the former linked to the diverging length scale
and the latter to the diverging time scale. In VP models, they are related through the vortex diffusivity,

D−1 =
µ0

8π

σ(Ω, T )
χ(T )

=
µ0

4π

σ1(0, T )
χ(T )

, (4)

a formula that has the form of an Einstein relation for the VP.
To test the prediction of Eq. (4), it would be highly desirable to measure χ(T ) and σ(ω, T ) in the same

samples. While this has not been done as yet, Li et al. [15] have measured χ(T ) in an underdoped BSCCO
crystal with a Tc of 86 K, which is quite close to that of one of the samples whose THz conductivity we
have analyzed. From the ratio of χ(T ) (as shown in Fig. 4 of [15]) to σ(ω, T ) (for the the BSCCO film
with Tc=85 K), we estimate from Eq. (4) that D ∼ 0.001-0.01 m2/s. The VP picture of the fluctuating state
suggests that we compare this result with the Bardeen-Stephen prediction that D/Ac = Tρn/π2. For the
Bardeen-Stephen D to coincide with the value obtained from the Einstein relation, we must have Ac ∼
6×10−15 m2, corresponding to a core size of order ∼ 40 nm. This is much larger than the core size of ∼
2-3 nm that is seen in STM measurements or estimated from the Pippard length vF /∆. Expressed slightly
differently, if we were to substitute a core radius of order vF /∆ into the Bardeen-Stephen formula we would
obtain D ∼ 10−5 m2/s, at least two orders of magnitude smaller than the what is needed to account for the
observed χ/σ. Thus the vortices would indeed have to be “big” [26] (compared with the scale set by Hc2)
and therefore “fast” [25] to be consistent with the observed ratio of susceptibility to conductivity.

Interest in the VP state in the cuprates was greatly stimulated by extensive measurements of the Nernst
effect by the Princeton group. The Nernst effect is the transverse voltage generated by a thermal gradient in
the presence of a magnetic field perpendicular to the conducting plane. Because of the transverse geometry
the Nernst effect plays same role for vortex transport as thermopower for quasiparticle transport. While at
present a detailed theoretical understanding of the effect is lacking, it is clear from measurements below
Tc that it is highly sensitive to the presence of a vortex plasma (or liquid) state. The more subtle issue is
the inverse, i.e., when does a Nernst signal indicate the existence of a VP? As the VP regime crosses over
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Fig. 10 Comparison of onset temperatures of superconduc-
tivity, fluctuation conductivity, and Nernst effect in the BSCCO
system. Nernst onset T ’s (triangles) are from [14]. Shading illus-
trates the region in which the conductivity is essentially normal
yet the Nernst signal is nonzero.

smoothly to a Gaussian fluctuation regime when the vortices become dense, we expect a smooth crossover
in Nernst voltage as well. Thus it clear that merely the existence of a Nernst signal does not indicate a
VP [27]. However, the Princeton group has shown that in a broad T range above Tc the Nernst signal is
comparable to what is seen in the mixed state below Tc, strongly suggesting that a reasonably dilute VP
persists in the normal state.

An especially interesting feature of the Nernst phenomenology is the disparity between the regime of VP
sensed by the Nernst voltage and by conductivity measurements. We illustrate the trend in Fig. 10, which
compares the onset temperatures of fluctuation conductivity Tσ and Nernst signal, TN . The Tσ’s, defined
by the condition Ω(Tσ) = kBT/�, are determined from Fig. 9, while the TN ’s are those quoted in [14]. It
can be seen that the disparity in the onset T ′s grows with decreasing x, and a large region of phase space
appears with VP response seen in the Nernst effect, but not in conductivity. The contrast between σ and
the Nernst signal (eN ) seen when varying T at H = 0 is mirrored by scans of H at a fixed T below Tc. In
such measurements dc resistance and eN appear together, as the vortex lattice melts [14]. However, while
ρdc reaches ρn quite rapidly, apparently representing the onset of the normal state, eN persists to a much
higher H [14].

Is it possible that the “Nernst region” can represent a relatively dilute VP, given that the phase fluctuation
frequency has reached ∼ T at a far lower T ? From our previous discussion we can write Ω ∼ ρs0(D/T )nF ,
where D/T is the vortex mobility. If Bardeen-Stephen dynamics are applicable, then the mobility is simply
the vortex core area. In this case, when Ω ∼ ρs ∼ T the dimensionless vortex density nF Ac must be
of order unity. Within the VP picture vortices can be dilute in such a regime only if D/T � Ac. Just as
we concluded from the comparison of σ and χ, consistency of σ and Nernst suggests that the vortices are
“fast.” Whether a fast vortex can emerge from either strong correlations or inhomogeneity in the cuprates
is a fascinating area of future research.
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